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Abstract 

As part of the George B. Moody PhysioNet Challenge 

2022, we developed a computational approach for 

identifying abnormal cardiac valve function from 

phonocardiograms (PCGs). Our team, uke-cardio, 

developed a deep learning model that uses mel-

spectograms of up to four different auscultation locations. 

CutMix and smooth labels were used to simultaneously 

learn different tasks. On the hidden test set, the classifier 

achieved a weighted accuracy score of 0.735 for murmur 

detection (ranked 15 out of 40 teams) and a challenge cost 

score of 11990 (ranked 8 out of 39 teams) on the outcome 

detection task. The source code is available at: 

github.com/msknorr/cinc22-pcg 

 

 

1. Introduction 

The phonocardiogram (PCG) refers to the audio 

recording of heart activity, usually obtained with an 

electronic stethoscope. PCGs can be used to uncover 

abnormal heart sounds, such as murmurs, related to heart 

conditions. The PCG is non-invasive and easy to obtain 

and thereby allows for accessible screening of murmurs in 

resource-constrained environments. The George B. Moody 

PhysioNet Challenge focuses on automated, open-source 

approaches for classifying abnormal cardiac function [1]. 

The goal of this year's challenge is to automatically classify 

abnormal heart function and clinical outcome from 

phonocardiograms [2] using data from mass screening 

campaigns of young individuals [3]. We approached the 

problem as a multi-class and multi-label learning task in 

order to build a robust one-fits-all algorithm. The two main 

hurdles of the challenge were a comparably small 

development dataset and dealing with the variable number 

of audio recordings of different ausculations locations 

(e.g., only AV was recorded) of varying length. To 

overcome these hurdles, our entry incorporated three main 

concepts:  

 

1. CutMix and soft targets 

2. Common feature extractor 

3. Time-series based pooling 

 

These main concepts were combined and carefully 

evaluated with a nested 6-fold cross-validation scheme. 

 

 

Figure 1. The feature extractor (EfficientNet-B1) takes as 

input crops of mel-spectrograms of up to four different 

auscultation locations (PV, TV, AV, MV). A reshape and 

pool (*) operation pools multiple crops from the same 

time-series of the same valve. The four resulting pooled 

embedding vectors were concatenated with tabular 

features and fed into a stack of linear layers for the 

competition tasks (not shown here). 

2. Method 

Briefly, raw audio data of up to 4 different auscultation 

locations were transformed to mel-spectrograms. These 

were cropped and passed into a 2D-CNN feature extractor. 

The resulting embedding vector was combined with 

tabular data, to finally retrieve the class probabilities for 

different classification tasks. Using held out data, we found 

the optimal threshold for the binarization of the predictions 

to retrieve the final prediction. The training dataset 

consisted of 942 unique patients. Our pipeline therefore 

incorporated 3 main concepts to overcome overfitting in 

this competition: 1. CutMix and soft targets. To prevent 

overfitting, we employed a variation of the CutMix 

regularization technique [4] during training. Here, the 

dataset was artificially enlarged by mixing the PCGs of 

different patients. That is, a datapoint may be put together 

by three valves of patient one (e.g., Present murmur) and 

one valve of a different patient (e.g., Absent murmur). The 

targets were adjusted accordingly, resulting in soft targets 

(e.g., 0.75 Present, 0.0 Unknowns, 0.25 Absent). 2. 
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Common feature extractor. Instead of training a CNN for 

each auscultation location individually, we employed a 

single common feature extractor. Although this single 

backbone was used for all four locations by collapsing the 

respective tensor dimension (2.2 Model), information 

about the auscultation location was not lost as the feature 

extractor output was concatenated location-wise, resulting 

in a four times larger embedding vector. 3. Time-series 

based Pooling. Murmurs are present to varying extents in 

consecutive heart cycles. Thus, if the time-series is cropped 

into multiple parts, one cannot be sure that certain parts 

also include murmurs. Therefore, to allow the model to 

look at the whole audio sequence while keeping the benefit 

of a small and uniformed sized crop, the time-series of 

embedding vectors of mel-spectogram crops were pooled 

per PCG. 

2.1. Audio preprocessing 

Raw audio files, sampled at 4000 Hz, were converted to 

a 2D-mel-spectrogram representation, which more closely 

resembles the frequency distance heard by the human ear 

compared to a standard spectrogram. Using time-

frequency representations, i.e., a mel-spectrogram, instead 

of directly applying a 1D-CNN on the audio data is 

expected to perform better as shown for electrocardiogram 

(ECG) data [5]. We chose the number of mels of 200 

(yielding 200 individual frequencies), num_fft of 256 and 

a hop length of 64. Mel-spectrogram's pixel values were z-

transformed. We resized the frequency axis (length 200) to 

224 and cropped 224 long time windows without overlap 

from the spectrogram, equivalent to approximately 3 

second windows. A crop usually contains 3-5 heart cycles. 

During training, 5 crops for each location were used. For 

inference and validation, we used 7 crops to account for 

longer sequences. Missing leads or short sequences were 

padded with zeros. During training, coarse dropout and 

random time and frequency dropouts were applied in order 

to increase robustness. During inference and validation, no 

augmentations were applied. 

 

2.2. Model 

The model (figure 1) receives a 6-dimensional vector: 

[bs, n_leads, n_crops, c, x, y] 

with 

bs = batchsize 

n_leads = PCG locations (AV, MV, PV, TV) 

n_crops = number of mel-spectrogram crops from one 

auscultation location 

c = color channels 

x = number of mels of the mel-spectrogram 

y = time-axis of the mel-spectrogram 

 

with bs = 3, n_leads = 4, n_crops = 5 (inference: 7), 3 color 

channels and 244 points in time and 244 frequency bands. 

A reshape operation collapses the first three dimensions: 

[bs, n_leads, n_crops, c, x, y] -> [bs * n_leads * n_crops, 

c, x, y] 

The resulting 4-dimensional tensor is forwarded into an 

EfficientNet-B1 [6] feature extractor that outputs a feature 

vector of size 25 for each crop. Then, the first dimension 

of the tensor is reshaped back into the initial 3 dimensions. 

This process of collapse, feature embedding and reshaping 

results in the embedding of the mel-spectrograms through 

a common feature extractor, while preserving the 

information of leads and crops: 

[bs * n_leads * n_crops, 100] -> [bs, n_leads, n_crops, 

25] 

Next, the tensor is average pooled along the time 

dimension (n_crops): 

[bs, n_leads, n_crops, 25] -> [bs, n_leads, 25] 

and reshaped so that for each patient a feature vector for all 

4 leads remains: 

[bs, n_leads, 25] -> [bs, n_leads * 25] 

-> [bs, 100] 

This embedding was concatenated with tabular data (2.4 

Tabular data), followed by a dropout layer and an 

intermediate linear layer. Then, for each of our targets, a 

head of linear layers follows.  

 

2.3. Targets and losses 

In addition to the main task of predicting murmur and 

outcome probabilities, auxiliary tasks function as model 

regularization. These additional tasks are supposed to 

improve robustness, performance and data efficiency [7], 

[8] but could also harm the generalization performance 

(‘negative transfer’) [9] when weighted unfavorably. Our 

model predicts eight targets in total with varying output 

dimensions (table 1). Depending on the task, either a 

softmax activation function was applied and trained with 

categorical cross entropy (CCE) loss for multi-class 

classification tasks, or sigmoid activation and binary cross 

entropy (BCE) for multi-label classification.  

 

Task  out_dim loss 

Murmur 3 CCE 

Outcome 2 CCE 

Where hearable 4 BCE 

Timing 5 CCE 

Shape 5 CCE 

Grading 4 CCE 

Pitch 4 CCE 

Quality 4 CCE 

 

Table 1.  A composition of tasks the model learned. 

Murmur and outcome refer to the challenge objective with 

3 and 2 output neurons respectively. The remaining tasks 

refer to murmur-related auxiliary tasks. CCE = Categorical 
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cross entropy, BCE = Binary cross entropy. 

 

The losses were weighted based on their magnitude and 

relevance to the main task to form the loss ℒtotal according 

to: 

ℒaux = (ℒtiming + ℒshape + ℒgrading + ℒpitch + ℒquality) / 5  
 

ℒtotal = (ℒmurmur * 3 + ℒoutcome + ℒwhere_hearable + ℒaux * 2) / 6 

 

During training, a batch size of 3 was used, with an Adam 

optimizer [10] with weight decay (0.0005), an initial 

learning rate of 0.0001, and a scheduler that reduces the 

learning rate by a factor of 0.5 after 3 epochs without 

validation loss improvement. CutMix was randomly 

applied during training in 80% samples.  

 

2.4. Tabular data 

Tabular data was concatenated with the mel-spectrogram 

feature vector, followed by a dropout layer to regularize 

training in the low data regime. The tabular data consisted 

of a one-hot encoded representation of sex and pregnancy 

status (e.g., male -> [0, 1], female -> [1, 0]), and a stairway 

encoded one-hot vector of 5 given age specifications 

(Neonate, Infant, Child, Adolescent, Young adult). 

Missing values were set to Child. Finally, available 

auscultation locations were encoded in a vector of length 4 

(e.g., only valve 2 available -> [0, 1, 0, 0]).  

 

2.5. CutMix and soft targets 

The application of the CutMix augmentation method 

improves robustness and out-of-distribution detection 

performance [4]. During training, auscultation locations 

were mixed between patients. That is, a datapoint may be 

put together by three valves of a patient and one valve of a 

different patient. The targets were adjusted accordingly. 

For example: patient 1 had a murmur and patient 2 was 

healthy, and one lead of patient 1 was replaced by one lead 

of patient 2, the new label would be set to [0.75, 0, 0.25], 

as now the contribution of the murmur class was only 75% 

(3 of 4 leads). 

 

2.6. Local validation routine 

We used a nested stratified cross-validation procedure. 

The training data was split patient-wise and stratified by 

occurrences of murmur labels. The whole dataset was split 

in six folds. One of the six was used to simulate the hidden 

test set. From the other five splits, three were used for 

training, one for local validation (≠ validation data) and 

one for threshold selection. These ‘inner-folds’ were 

shuffled and repeated 5 times, yielding 5 models. A 

submission to the competition consists of the average 

prediction of these 5. For the cross validation (CV) score, 

6 individual scores (5 models each) on the local test data 

are reported. Therefore, a full CV requires training of 30 

models and a submission requires training 5. 

  

2.7. Binarization 

During inference, initially all patients were classified as 

Present in the murmur detection task. Then, two thresholds 

were applied: If the model probability for Unknown was 

greater than the Unknown threshold, the patient was set to 

Unknown. Afterwards, the same procedure was applied for 

Absent. That is, Unknown may override Present, and 

Absent may override Unknown. Thresholds were 

determined by iterating in steps of 0.05 over the Unknown 

and Absent threshold and reporting the weighted accuracy 

on the threshold selection dataset as a heatmap. Then, the 

scores were rounded to second decimal place. If two or 

more thresholds resulted in the same score, the ‘final’ 

threshold was determined by taking the average. 

 

3. Results 

Our team achieved a weighted accuracy score of 0.735 

(ranked 15 out of 40 teams) and a challenge cost score of 

11990 (ranked 8 out of 39 teams) for the outcome 

prediction task on the hidden test set. Murmur scores can 

be found in table 2 and 3, outcome scores are reported in 

table 4. 

 Training Validation Test Ranking 

0.74±0.04 0.68 0.735 15/40 

Table 2. Weighted accuracy scores for the murmur 

detection task. We used 6-fold cross validation on the 

public training set (mean and SD), repeated scoring on the 

hidden validation set, and one-time scoring on the hidden 

test set. 

 

AUROC AUPR

C 

F-

measure 

Accu

racy 

Weighted 

Accuracy 

0.89 0.735 0.597 0.79 0.735 

Table 3. Advanced metrics for the murmur detection task 

on the hidden test dataset. 

 

 Training Validation Test Ranking 

10567 10105 11990 8/39 

Table 4. Cost scores for the outcome detection task. 
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4. Discussion 

We approached the 2022 PhysioNet Challenge with deep 

learning methodology, even though the dataset was 

relatively small. Since 2D-CNNs perform well on mel-

spectrograms or spectrograms in general, we used them 

together with methods to prevent overfitting, namely 

CutMix of auscultation locations of different patients with 

soft targets, a small feature extractor and finally strong 

audio augmentation. The cross-validation score on the 

training dataset did not differ much from the final 

competition scores on the murmur task, implying that we 

could successfully circumvent generalization issues on 

unseen data and trust our local validation routine. 
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